### The Definite Integral (Sections 5.4 and 5.5) Warm –up: Two Ways to Calculate Area Under a Curve

1. Graph  $y = \frac{x}{2} + 1$  and calculate the area under it (using geometry formulas) over [0,3].



- 2. Now estimate the area by using the right endpoint rectangle method.
  - a) n = 3

| i | $X_i$ | $f(x_i)$ | $A_{i}$ |
|---|-------|----------|---------|
| 0 |       |          |         |
| 1 |       |          |         |
| 2 |       |          |         |
| 3 |       |          |         |

| b) | n | = | 12 |
|----|---|---|----|
|----|---|---|----|

| i  | r                 | $f(\mathbf{x})$ | Α            |
|----|-------------------|-----------------|--------------|
|    | $\mathcal{N}_{i}$ | $\int (x_i)$    | 7 <b>1</b> i |
| 0  |                   |                 |              |
| 1  |                   |                 |              |
| 2  |                   |                 |              |
| 3  |                   |                 |              |
| 4  |                   |                 |              |
| 5  |                   |                 |              |
| 6  |                   |                 |              |
| 7  |                   |                 |              |
| 8  |                   |                 |              |
| 9  |                   |                 |              |
| 10 |                   |                 |              |
| 11 |                   |                 |              |
| 12 |                   |                 |              |

3. Which approximation is closer to the exact area found in #1?

This leads to the general conclusion that the approximation of area from the rectangle

method gets closer and closer to the exact area as



# The Definite Integral (Sections 5.4 and 5.5) The Definition of Area as a Limit



**Net Signed Area** 



Areas below the x-axis are considered negative. Why? \_

# **Definition of the Definite Integral**



#### The Definite Integral (Sections 5.4 and 5.5)

### **Properties of the Definite Integral**

1.  $\int_{a}^{a} f(x)dx = 0$ 2.  $\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$ 3.  $\int_{a}^{b} cf(x)dx = c\int_{a}^{b} f(x)dx$ 4.  $\int_{a}^{b} [f(x) + g(x)]dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$ 5.  $\int_{a}^{b} [f(x) - g(x)]dx = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$ 6.  $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$  (if c is on [a, b]

The Definite Integral (Sections 5.4 and 5.5)

#### **Classwork/Homework**

